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Why go beyond O(p2)? Why loops?
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Why go beyond O(p2)? Why loops?
◮ Why not? Chiral Symmetry forbids O(p0) interactions

between pions, but allows all higher orders
◮ Unitarity requires that if an amplitude at order p2 is purely

real, at order p4 its imaginary part is nonzero.
Take the ππ scattering amplitude. The elastic unitarity
relation for the partial waves t I

ℓ of isospin I and angular
momentum ℓ reads:

Im t I
ℓ =

√

1 −
4M2

π

s
|t I

ℓ|
2
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◮ The correct imaginary parts are generated automatically
by loops
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Why go beyond O(p2)? Why loops?
◮ Why not? Chiral Symmetry forbids O(p0) interactions

between pions, but allows all higher orders
◮ Unitarity requires that if an amplitude at order p2 is purely

real, at order p4 its imaginary part is nonzero.
Take the ππ scattering amplitude. The elastic unitarity
relation for the partial waves t I

ℓ of isospin I and angular
momentum ℓ reads:

Im t I
ℓ =

√

1 −
4M2

π

s
|t I

ℓ|
2

◮ The correct imaginary parts are generated automatically
by loops

◮ The divergences occuring in the loops can be disposed of
just like in a renormalizable field theory
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Effective quantum field theory

The method of effective quantum field theory provides a rigorous
framework to compute Green functions that respect all the good
properties we require: symmetry, analyticity, unitarity

The method yields a systematic expansion of the Green func-
tions in powers of momenta and quark masses

In the following I will discuss in detail how this works when you
consider loops:

◮ I will consider the finite, analytically nontrivial part of the
loops and discuss in detail its physical meaning

◮ I will consider the divergent part of the loops and discuss
how the renormalization program works
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Scalar form factor of the pion

〈πi(p1)π
j(p2)|m̂(ūu + d̄d)|0〉 =: δijΓ(t) , t = (p1 + p2)

2 ,

At tree level:
Γ(t) = 2m̂B = M2

π + O(p4) ,

in agreement with the Feynman–Hellman theorem:
the expectation value of the perturbation in an eigenstate of the
total Hamiltonian determines the derivative of the energy level
with respect to the strength of the perturbation:

m̂
∂M2

π

∂m̂
= 〈π|m̂q̄q|π〉 = Γ(0) .

This matrix element is relevant for the decay h → ππ, which, for
a light Higgs would have been the main decay mode

Donoghue, Gasser & Leutwyler (90)
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Dispersion relation for Γ(t)

For t ≥ 4M2
π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in

the complex t plane, and obeys the following dispersion relation:
Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)
t ′ − t
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Dispersion relation for Γ(t)

For t ≥ 4M2
π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in

the complex t plane, and obeys the following dispersion relation:
Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)
t ′ − t

Unitarity implies [σ(t) =
√

1 − 4M2
π/t ]

Im Γ̄(t) = σ(t)Γ̄(t)t0
0
∗
(t) = Γ̄(t)e−iδ0

0 sin δ0
0 = |Γ̄(t)| sin δ0

0

where t0
0 is the S–wave, I = 0 ππ scattering amplitude

Strictly speaking, the above unitarity relation is valid only for t ≤ 16M2
π

. To a good approximation, however, it holds

up to the K K̄ threshold
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Dispersion relation and chiral counting

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t ′)
t ′ − t

b ∼ O(1)
(

1 + O(M2
π)

)

δ0
0 ∼ O(p2)

(

1 + O(p2)
)

There are two O(p2) correction to Γ̄:

1. O(1) contribution to b;

2. the dispersive integral containing the O(p2) phase δ0
0.

Notice that the latter is fixed by unitarity and analyticity

Are these respected by the one loop calculation?
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Dispersion relation and one–loop CHPT

The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(̄l4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t) − 1
σ(t) + 1

+ 2
]
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Dispersion relation and one–loop CHPT

The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(̄l4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t) − 1
σ(t) + 1

+ 2
]

To prove that unitarity and analyticity are respected at this order
is sufficient to add:

δ0
0(t) = σ(t)

2t − M2
π

32πF 2
π

+O(p4) J̄(t) =
t

16π2

∫ ∞

4M2
π

dt ′

t ′
σ(t ′)
t ′ − t
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Can you prove it?

Hints:
◮ Subtract J̄(t) once more

J̄(t) =
t

96π2M2
π

+
t2

16π2

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
t ′ − t

◮ Trick to pull out a linear term from the dispersive integral:
∫ ∞

4M2
π

dt ′

t ′2
t ′σ(t ′)
t ′ − t

= t
∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
t ′ − t

+

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
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High-energy contributions

The dispersive integral goes up to s′ = ∞, but the integrand is
correct only at low energy!

Γ̄(t)h.e. =
t2

π

∫ ∞

Λ2

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t ′)
t ′ − t

∼
t2

π

∫ ∞

Λ2

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t ′)
1
t ′

(

1 +
t
t ′

+ . . .

)

∼ ct2 + O(t3)

The contributions from the high-energy region of the dispersive
integral are formally of higher order – introducing a cut-off to
remove them would only make the formulae more cumbersome
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Renormalization at one loop

∫
d4l

(2π)4

{p2, p·l , l2}
(l2 − M2)((p − l)2 − M2)

, p = p1 + p2

∼

∫
d4l

(2π)4

1
(l2−M2)

︸ ︷︷ ︸

+ p2
∫

d4l
(2π)4

1
(l2−M2)((p−l)2−M2)

︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)
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Renormalization at one loop

∫
d4l

(2π)4

{p2, p·l , l2}
(l2 − M2)((p − l)2 − M2)

, p = p1 + p2

∼

∫
d4l

(2π)4

1
(l2−M2)

︸ ︷︷ ︸

+ p2
∫

d4l
(2π)4

1
(l2−M2)((p−l)2−M2)

︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)

T̄ (M2) and J̄(t) are finite

Γ(t) ∼ M2
[

1 + bM2 + tJ(0)
︸ ︷︷ ︸

+T̄ (M2) + J̄(t)
]

divergent part
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t

To remove the divergences one only needs to properly define
the couplings (ℓ3,4) in the lagrangian at order O(p4)
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ ℓ3M4 + ℓ4M2t

To remove the divergences one only needs to properly define
the couplings (ℓ3,4) in the lagrangian at order O(p4)

Quote from Weinberg’s book on QFT, vol. I: “(...) as long as we
include every one of the infinite number of interactions allowed
by symmetries, the so–called non–renormalizable theories are
actually just as renormalizable as renormalizable theories.”
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Chiral logarithms

Scalar radius of the pion

Γ(t) = Γ(0)

[

1 +
1
6
〈r2〉πSt + O(t2)

]

〈r2〉πS ∼ J(0) =

∫
d4l

(2π)4

1
(l2 − M2)2 ∼ ln

M2

Λ2

The integral is UV divergent, but also IR divergent if M → 0:

lim
M2→0

〈r2〉πS ∼ ln M2 ,

The extension of the cloud of pions surrounding a pion (or any
other hadron) goes to infinity if pions become massless (Li and
Pagels ’72 )
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .

Chiral symmetry implies that after calculating the divergent part
of Γ(s) I also know the divergent part of the 6π → 6π scattering
amplitude
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce
violations of the chiral symmetry? Or that one can build a
chiral invariant generating functional only with a path
integral over a chiral invariant classical action?
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Chiral symmetry and renormalization

To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈∂µU†∂µU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce
violations of the chiral symmetry? Or that one can build a
chiral invariant generating functional only with a path
integral over a chiral invariant classical action?

2. Is there a tool that allows one to calculate the divergences
keeping chiral invariance explicit in every step of the
calculation?
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Leutwyler’s theorem

What is the most general way of constructing a chiral-invariant
generating functional out of a path integral over the Goldstone
boson degrees of freedom?

Z [v ′, a′, s′, p′] = Z [v , a, s, p] ⇔ Leff[v ′, a′, s′, p′] = Leff[v , a, s, p]?

For Lorentz–invariant theories in 4 dimensions, a path integral
constructed with gauge–invariant lagrangians is a necessary
and sufficient condition to obtain a gauge–invariant generating
functional

The theorem also includes the case in which the symmetry is
anomalous and the case in which the symmetry is explicitly bro-
ken

Leutwyler (94), d’Hoker & Weinberg (94)
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Chiral invariant renormalization
◮ Gasser & Leutwyler (84) have shown that, using the

background field method and heat kernel techniques, the
calculation of the divergences at one loop – and the
corresponding renormalization – can be performed in an
explicitly chiral invariant manner

◮ The method has been extended and applied to two loops
(Bijnens, GC & Ecker 98). After a long and tedious
calculation, the divergent parts of all the counterterms at
O(p6) has been provided

◮ The renormalization of CHPT up to two loops has been
performed explicitly: the calculation of any amplitude at two
loops can be immediately checked by comparing the
divergent part of Feynman diagrams to the divergent parts
of the relevant counterterms
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Chiral perturbation theory
◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good
properties we require:
symmetry, analyticity, unitarity
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◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good
properties we require:
symmetry, analyticity, unitarity

◮ The method yields a systematic expansion of the Green
functions in powers of momenta and quark masses
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Chiral perturbation theory
◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good
properties we require:
symmetry, analyticity, unitarity

◮ The method yields a systematic expansion of the Green
functions in powers of momenta and quark masses

◮ The method has been rigorously established and can be
formulated as a set of calculational rules:
LO tree level diagrams with L2

NLO tree level diagrams with L4

1-loop diagrams with L2

NNLO tree level diagrams with L6

2-loop diagrams with L2

1-loop diagrams with one vertex from L4
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ππ scattering at NLO

a0
0 =

7M2
π

32πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

200πF 2
π M2

π

7
(a0

2 + 2a2
2)

−
M2

π

672π2F 2
π

(15ℓ̄3 − 353)

]

= 0.16 · 1.25 = 0.20

2a0
0 − 5a2

0 =
3M2

π

4πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

41M2
π

192π2F 2
π

]

= 0.624

Gasser and Leutwyler (83)
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Higher orders too large?

Higher order corrections are suppressed by O(p2/Λ2)
Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 + O(p6) a2

0 = −0.0445 + O(p6)

The reason for the rather large correction in a0
0 is a chiral log

a0
0 =

7M2
π

32πF 2
π

[

1 +
9
2
ℓχ + . . .

]

a2
0 = −

M2
π

16πF 2
π

[

1 −
3
2
ℓχ + . . .

]

ℓχ =
M2

π

16π2F 2
π

ln
µ2

M2
π

Gasser and Leutwyler (84)
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Scattering lengths: theory vs experiment
◮ Weinberg (66), O(p2) :

a0
0 = 0.16, a2

0 = −0.045

◮ Gasser and Leutwyler (83), O(p4):

a0
0 = 0.20 ± 0.01, a2

0 = −0.044

◮ Bijnens, GC, Ecker, Gasser and Sainio (95), O(p6):

a0
0 = 0.217, a2

0 = −0.044

◮ GC, Gasser and Leutwyler (01), O(p6)+dispersion
relations:

a0
0 = 0.220 ± 0.005, a2

0 = −0.0444 ± 0.0010
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Scattering lengths: theory vs experiment

a0
0 = 0.26 ± 0.05 Rosselet et al. (77)

a0
0 = 0.216 ± 0.013 ± 0.003 Pislak et al. (E865) (03)

|a0
0 − a2

0| = 0.264 +0.033
−0.020 Adeva et al. (DIRAC) (05)

a0
0 − a2

0 = 0.268 ± 0.010 ± 0.013 Batley et al. (NA48/2) (06)

a0
0 = 0.256 ± 0.011[PRELIMINARY] B. Bloch-Devaux (NA48/2) (06)

Method of measurement

Rosselet et al. Ke4 Cabibbo & Maksymowicz (65)
Pislak et al. (E865) " " " "
Adeva et al. (DIRAC) Pionium Deser et al. (56)
Batley et al. (NA48/2) K → 3π Cabibbo (04)
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Scattering lengths: theory vs experiment

0.16 0.18 0.2 0.22 0.24 0.26

a
0
0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

a
2
0

Universal band
tree (66), one loop (83), two loops (96)
Prediction (ChPT + dispersion theory, 2001)
E 865 (2003)
DIRAC (2005)
NA48 (2005)
MILC (2004)
NPLQCD (2005)
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Scattering lengths: theory vs experiment

0 0.05 0.1 0.15 0.2 0.25 0.3

Mπ(GeV)

0

0.5

1

1.5

2

2.5

3

R
0

R
2

Mπ-dependence of the scattering lengths: RI = aI
0/aI

0(Weinberg)
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Sensitivity to the quark condensate

The constant ℓ̄3 appears in the chiral expansion
of the pion mass

M2
π = 2Bm̂

[

1 +
2Bm̂

16πF 2
π

ℓ̄3 + O(m̂2)

]

m̂ =
mu + md

2
B = −

1
F 2 〈0|q̄q|0〉

Its size tells us what fraction of the pion mass is given by the
Gell-Mann–Oakes–Renner term

M2
GMOR ≡ 2Bm̂

Crude estimate: ℓ̄3 = 2.9 ± 2.4 Gasser & Leutwyler (84)
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Sensitivity to the quark condensate

0.16 0.18 0.2 0.22 0.24 0.26 0.28

a
0

0

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

a 02

small condensate

large condensate

The E865 data on Kℓ4 imply that GC, Gasser & Leutwyler PRL (01)

MGMOR > 94%Mπ
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ππ scattering, Roy equations

◮ Crossing symmetry implies that ReT (s, t) is given by a
twice subtracted dispersive integral over ImT (s, t) in the
physical region S.M. Roy 1971

◮ As subtraction constants one can choose the S-wave
scattering lengths

a0
0 , a2

0

◮ Projecting onto the partial waves one obtains the

Roy equations

coupled integral equations for the partial waves
◮ Pioneering work in solving numerically these equations

has been performed in the seventies Basdevant, Froggatt, Petersen 1974
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Roy equations and chiral symmetry
◮ Two subtractions ⇒ dispersive integrals converge rapidly

at low energy the most important ingredient are the
scattering lengths [not well known in the seventies]

◮ Phenomenological information on the imaginary parts
above 0.8 GeV, though not precise, has little impact on the
uncertainties at low energy Ananthanarayan, GC, Gasser, Leutwyler (01)

Descotes, Fuchs, Girlanda, Stern (02)

◮ Chiral symmetry provides precise information about the
scattering lengths

Weinberg (66), Gasser & Leutwyler (84), Bijnens, GC, Ecker, Gasser, Sainio (96)

◮ Matching the dispersive and chiral representation near
s = 0 one obtains the ππ scattering amplitude at low
energy to a high degree of precision GC, Gasser and Leutwyler (01)
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Roy equations and chiral symmetry
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Hyams et al.
Protopopescu et al.
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The σ in the PDG
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“Is there any reason why composite q̄q or ℓ̄ℓ scalar particles have never been clearly established?”
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The σ in the data – BES (04), J/ψ → ωπ+π−
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How is the σ pole determined?

The relevant question is:

Where does the amplitude have a pole on the second Riemann
sheet of the complex s plane?

The answer ought to be model- and parametrization-
independent



Intro Unitarity Renormalization Applications Summary ππ scattering The σ resonance Areas of application

How is the σ pole determined?

What is usually done is instead the following:
Fit the data with a parametrization, e.g.

f =
Gσ

M2 − s − iMΓtot(s)

Γtot(s) = g1
ρππ(s)

ρππ(M2)
+ g2

ρ4π(s)

ρ4π(M2)

where g1,2 can also be functions of s
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How is the σ pole determined?

What is usually done is instead the following:
Fit the data with a parametrization, e.g.

f =
Gσ

M2 − s − iMΓtot(s)

Γtot(s) = g1
ρππ(s)

ρππ(M2)
+ g2

ρ4π(s)

ρ4π(M2)

where g1,2 can also be functions of s

The fit to the data determines the σ parameters, M and Γtot

The outcome is parametrization-dependent
Moreover, an obvious shortcoming of many of the parametriza-
tions used to fit data is the neglect of the left-hand cut
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Compare to the ρ in e+e− → π+π−
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Roy representation of t0
0

Double-subtracted, crossing symmetric dispersion relation for t0
0

t0
0 (s) = a + (s − 4M2

π) b +

∫ Λ2

4M2
π

ds′
{

K0(s, s′) Im t0
0 (s′)

+ K1(s, s′) Im t1
1 (s′) + K2(s, s′) Im t2

0 (s′)
}

+ d0
0 (s)

a = a0
0 , b = (2 a0

0 − 5 a2
0)/(12M2

π)

K0(s, s′) =
1

π(s′−s)
+

2 ln((s + s′ − 4M2
π)/s′)

3π(s−4M2
π)

−
5s′+2s−16M2

π

3πs′(s′−4M2
π)
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Roy representation of t0
0

Double-subtracted, crossing symmetric dispersion relation for t0
0

t0
0 (s) = a + (s − 4M2

π) b +

∫ Λ2

4M2
π

ds′
{

K0(s, s′) Im t0
0 (s′)

+ K1(s, s′) Im t1
1 (s′) + K2(s, s′) Im t2

0 (s′)
}

+ d0
0 (s)

a = a0
0 , b = (2 a0

0 − 5 a2
0)/(12M2

π)

This representation allows one to evaluate t0
0 in the complex

plane – in its domain of validity on the first sheet.
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Roy representation of t0
0
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Roy representation of t0
0

Double-subtracted, crossing symmetric dispersion relation for t0
0

t0
0 (s) = a + (s − 4M2

π) b +

∫ Λ2

4M2
π

ds′
{

K0(s, s′) Im t0
0 (s′)

+ K1(s, s′) Im t1
1 (s′) + K2(s, s′) Im t2

0 (s′)
}

+ d0
0 (s)

a = a0
0 , b = (2 a0

0 − 5 a2
0)/(12M2

π)

This representation allows one to evaluate t0
0 in the complex

plane – in its domain of validity on the first sheet.

Poles, however, are to be found on the second sheet
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Roy representation of S0
0

S0
0(s) = 1 − 2

√

4M2
π

s
− 1t0

0 (s) , 0 ≤ s ≤ 4M2
π
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Roy representation of S0
0

S0
0(s) = 1 − 2

√

4M2
π

s
− 1t0

0 (s) , 0 ≤ s ≤ 4M2
π

Unitarity implies that: S0 I
0 (s + iǫ) =

[
S0 I

0 (s − iǫ)
]−1
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Roy representation of S0
0

S0
0(s) = 1 − 2

√

4M2
π

s
− 1t0

0 (s) , 0 ≤ s ≤ 4M2
π

Unitarity implies that: S0 I
0 (s + iǫ) =

[
S0 I

0 (s − iǫ)
]−1

The second sheet is reached by analytic continuation crossing
the real axis from above: (for ǫ infinitesimally small)

S0 II
0 (s − iǫ) = S0 I

0 (s + iǫ) =
[

S0 I
0 (s − iǫ)

]−1
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Roy representation of S0
0

S0
0(s) = 1 − 2

√

4M2
π

s
− 1t0

0 (s) , 0 ≤ s ≤ 4M2
π

Unitarity implies that: S0 I
0 (s + iǫ) =

[
S0 I

0 (s − iǫ)
]−1

The second sheet is reached by analytic continuation crossing
the real axis from above: (for ǫ infinitesimally small)

S0 II
0 (s − iǫ) = S0 I

0 (s + iǫ) =
[

S0 I
0 (s − iǫ)

]−1

By analytic continuation, it is then true everywhere that

S0 II
0 (s) =

[

S0 I
0 (s)

]−1

Poles on the second sheet correspond to zeros on the first sheet!
Caprini, GC and Leutwyler, PRL (06)
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Summary: method to determine the pole position

◮ Roy equations provide an explicit representation of t0
0 on

the first sheet, in terms of the imaginary parts of the partial
waves on the real axis and two subtraction constants:

t0
0 (s) = a + (s − 4M2

π) b +

∫ Λ2

4M2
π

ds′K0(s, s′) Im t0
0 (s′) + . . .
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Summary: method to determine the pole position

◮ Roy equations provide an explicit representation of t0
0 on

the first sheet, in terms of the imaginary parts of the partial
waves on the real axis and two subtraction constants:

t0
0 (s) = a + (s − 4M2

π) b +

∫ Λ2

4M2
π

ds′K0(s, s′) Im t0
0 (s′) + . . .

◮ Unitarity implies that the S-matrix on the second sheet is
equal to the inverse of the S-matrix on the first sheet

S0 II
0 (s) =

[

S0 I
0 (s)

]−1

◮ Using as input the imaginary parts of the partial waves and
the two S-wave scattering lengths one can determine the
position of the poles of the S-matrix on the second sheet
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Importance of the scattering lengths
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Zeros of S0
0 (and S1

1)

Input: the imaginary parts from Roy solutions below 1.15 GeV
[GC, Leutwyler, in preparation] and the central values of the two
scattering lengths (CHPT) we find two pairs of zeros

m2
σ = (6.2 ± i 12.3) M2

π m2
f0

= (51.4 ± i 1.4) M2
π
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Zeros of S0
0 (and S1
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Zeros of S0
0 (and S1

1)

Input: the imaginary parts from Roy solutions below 1.15 GeV
[GC, Leutwyler, in preparation] and the central values of the two
scattering lengths (CHPT) we find two pairs of zeros

m2
σ = (6.2 ± i 12.3) M2

π m2
f0

= (51.4 ± i 1.4) M2
π

Error analysis: [at fixed a0
0, a2

0 and δA ≡ δ0
0(0.8GeV)]

mσ = 441 ± 4 − i(272 ± 6) MeV
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Zeros of S0
0 (and S1

1)

Input: the imaginary parts from Roy solutions below 1.15 GeV
[GC, Leutwyler, in preparation] and the central values of the two
scattering lengths (CHPT) we find two pairs of zeros

m2
σ = (6.2 ± i 12.3) M2

π m2
f0

= (51.4 ± i 1.4) M2
π

Error analysis:

mσ = 441 ± 4 − i(272 ± 6) MeV + (−2.4 + i3.8)∆a0
0

∆a0
0 =

a0
0 − 0.220

0.005
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Zeros of S0
0 (and S1

1)

Input: the imaginary parts from Roy solutions below 1.15 GeV
[GC, Leutwyler, in preparation] and the central values of the two
scattering lengths (CHPT) we find two pairs of zeros

m2
σ = (6.2 ± i 12.3) M2

π m2
f0

= (51.4 ± i 1.4) M2
π

Error analysis:

mσ = 441 ± 4 − i(272 ± 6) MeV + (−2.4 + i3.8)∆a0
0

+(0.8 − i4.0)∆a2
0

∆a0
0 =

a0
0 − 0.220

0.005
∆a2

0 =
a0

0 + 0.0444
0.001
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Zeros of S0
0 (and S1

1)

Input: the imaginary parts from Roy solutions below 1.15 GeV
[GC, Leutwyler, in preparation] and the central values of the two
scattering lengths (CHPT) we find two pairs of zeros

m2
σ = (6.2 ± i 12.3) M2

π m2
f0

= (51.4 ± i 1.4) M2
π

Error analysis:

mσ = 441 ± 4 − i(272 ± 6) MeV + (−2.4 + i3.8)∆a0
0

+(0.8 − i4.0)∆a2
0 + (5.3 + i3.3)∆δA

∆a0
0 =

a0
0 − 0.220

0.005
∆a2

0 =
a0

0 + 0.0444
0.001

∆δA =
δA − 82.3

3.4
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Zeros of S0
0 (and S1

1)

Input: the imaginary parts from Roy solutions below 1.15 GeV
[GC, Leutwyler, in preparation] and the central values of the two
scattering lengths (CHPT) we find two pairs of zeros

m2
σ = (6.2 ± i 12.3) M2

π m2
f0

= (51.4 ± i 1.4) M2
π

Error analysis:

mσ = 441 ± 4 − i(272 ± 6) MeV + (−2.4 + i3.8)∆a0
0

+(0.8 − i4.0)∆a2
0 + (5.3 + i3.3)∆δA

∆a0
0 =

a0
0 − 0.220

0.005
∆a2

0 =
a0

0 + 0.0444
0.001

∆δA =
δA − 82.3

3.4

mσ = 441 ± 7 − i272 ± 9

Caprini, GC and Leutwyler, PRL (06)
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Different inputs
◮ The extension of the Roy equation analysis from 0.8 to

1.15 GeV has no impact on mσ. Using CGL (01) we get

mCGL
σ (model indep.) = 439.4 − i274.5 MeV

mCGL
σ (param.-dep.) = 470 ± 30 − i295 ± 20 MeV
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Different inputs
◮ The extension of the Roy equation analysis from 0.8 to

1.15 GeV has no impact on mσ. Using CGL (01) we get

mCGL
σ (model indep.) = 439.4 − i274.5 MeV

mCGL
σ (param.-dep.) = 470 ± 30 − i295 ± 20 MeV

◮ Using a phenomenological representation of the ππ
scattering amplitude [Pelaéz and Ynduráin (05)] we obtain

mPY
σ = 445 − i241 MeV

Our formula which describes the dependence on the main
three input parameters reproduces this result:

a0
0(PY ) = 0.23 , a2

0(PY ) = −0.048 , δA(PY ) = 90.9◦

⇒ mσ = 447 − i242 MeV
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Comparison to PDG and experimental information
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Comparison to PDG and experimental information
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Areas of application
◮ Pions, kaons and etas

◮ Purely strong interactions ((semi)leptonic decays)
◮ Weak nonleptonic (radiative) decays
◮ Electromagnetic interactions
◮ Decays of electromagnetically bound states
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons

◮ One nucleon sector: πN or KN scattering
◮ Electromagnetic interactions
◮ Two nucleon sector: NN scattering, nuclear forces
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons
◮ Connections to lattice QCD

◮ (Partially) Quenched Chiral Perturbation Theory
◮ Study of finite–volume and –temperature effects
◮ Extrapolation to the chiral limit
◮ Extrapolation to zero lattice spacing
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons
◮ Connections to lattice QCD
◮ Condensed–matter systems with spontaneous symmetry

breaking
◮ Ferromagnets
◮ Antiferromagnets in d = 3 or d = 2
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons
◮ Connections to lattice QCD
◮ Condensed–matter systems with spontaneous symmetry

breaking
◮ Electroweak symmetry breaking – models in which the

electroweak symmetry is broken strongly
◮ General relativity as an effective field theory
◮ Falsification of string theory?!?!
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Intro Unitarity Renormalization Applications Summary

Summary
◮ The finite, analytically nontrivial part of the one loop

integrals automatically generates the correct imaginary
parts, as required by unitarity.

◮ Effective quantum field theory is a systematic method to
generate a perturbative solution of dispersion relations

◮ The UV divergences encountered in loop integrals can be
removed according to standard renormalization methods

◮ Some loop integrals have also an IR singular behaviour
which has a very clear physical meaning, and again shows
the necessity of taking loop effects into account

◮ Leutwyler’s theorem: doing a path integral over an effective
Lagrangian is the most general way to construct an
invariant generating functional

◮ I have illustrated the method discussing two applications:
◮ the ππ S-wave scattering lengths
◮ the determination of the σ pole position
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