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Abstract

These lectures provide a short introduction to chiral perturbation

theory and to the effective field theory method in general. The focus is

mainly on the foundations of the method and only at the end I discuss

two recent applications. In a school about complexity, effective field

theories provide a nice example of how one can describe complicated

nonperturbative phenomena in simple terms.

1 Introduction

Effective field theories are an ubiquitous tool in physics. Indeed very rarely
does one hope to describe a physical system at all length scales (or energies),
and if one concentrates on a certain range and considers only the modes
which get excited at those energies, then one is doing an effective theory.
Although the atom contains quarks and gluons (inside the nucleus, that is),
we do not need to be able to describe the strong interactions if we want to
understand atomic spectra or how several atoms interact and form bound
states.

In particle physics we do have a theory that could in principle be valid
at all length scales, QCD. In the real world quarks and gluons do have also
other types of interactions and interact with other forms of matter too, but
one could imagine a world which is completely governed by QCD and where
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Figure 1: The lowest-lying part of the QCD spectrum in the sectors of
strangeness and baryon number 0 and 1. The bands for the σ and the κ
indicate the uncertainty in the mass as given by the PDG.

nothing else happens. This imaginary world is realized by the people who
do lattice QCD calculations. Of course they do not do this to see what
happens at very small length scales, but rather to test how well this the-
ory describes the non-perturbative phenomena which occur at large length
scales. At this school Richard Kenway [1] has explained how lattice calcu-
lations are performed and what the most recent developments in the field
are. He showed that in recent years there have been a number of important
developments which make a direct comparison to the phenomenology finally
possible. As always, however, the progress is still rather slow, despite the
steady increase in computer power, improvement in algorithms and clever
new ideas by physicists. The difficulty of this enterprise lies in the fact that
one wants to see new degrees of freedom emerge at low energy out of the
local interactions among quarks and gluons. We lack analytical tools to do
that and the numerical route is understandably not easy.

At very low-energy, however, the complex nonperturbative phenomena
which generate hadrons out of quarks and gluons and rule their interactions,
become simple, again. This happens because QCD undergoes a spontaneous
symmetry breaking: although in the chiral limit the Lagrangian is invariant
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under SU(Nf )L × SU(Nf )R (with Nf the number of light flavours) trans-
formations, the vacuum is invariant only under the vector part of this large
group. As predicted by the Goldstone theorem massless particles appear in
the spectrum, and their interaction becomes weak at low energy. There are
no massless hadrons in nature, but an octet of light ones (as illustrated in
Fig. 1), which have exactly the quantum numbers predicted by the Goldstone
theorem. Their small mass is readily understood in terms of a small mass
term in the QCD Lagrangian – this explicit chiral symmetry breaking gen-
erates a small mass for the Goldstone bosons. Since the interactions among
these Goldstone bosons vanish in the limit of zero quark masses and zero
momenta, one can do a perturbation theory around this limit and expand
in small masses and momenta. This is the main idea of chiral perturbation
theory (CHPT) which I will illustrate in some more details in what follows.
As shown in Fig. 1 the theory can be applied in the energy region where only
the Goldstone bosons are excited.

Since the method is completely general and can be applied to any system
which undergoes spontaneous symmetry breaking, I will put an emphasis on
this and describe its foundations without making specific reference to QCD
as long as this is possible (even if for convenience I may sometimes call the
Goldstone bosons “pions”). The plan of the paper is as follows. In Sect. 2
I will discuss the Goldstone theorem and how one can construct an effective
field theory on its basis. In Sect. 3 I will specifically concentrate on the
quantum character of the effective field theory and discuss in detail the role
and meaning of loop diagrams and how one can carry out the renormalization
program. The latter question is particularly relevant in view of the fact
that this kind of effective field theories is intrinsically non-renormalizable. In
Sect. 4 I will discuss a few recent results in CHPT and finally give an outlook
and draw a few conclusions in Sect. 5.

2 Effective field theories for systems with spon-

taneous symmetry breaking

2.1 Goldstone theorem

The Goldstone theorem is one of the few physics results which are absolutely
general and most relevant in very many different fields. If the Hamiltonian
of a system is invariant under a group G of global transformations, while the
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vacuum only under a subgroup H, then the spectrum of the system contains
massless excitations. The number of these depends only on the rank nG of
the group G and that of the subgroup H, nH , and is given by the difference of
the two: nGB = nG − nH . These massless excitations are usually referred to
as Goldstone bosons (which explains the subscript GB above). We indicate
with Qi, i = 1, . . . , nG the generators of the group G, with Hi, i = 1, . . . nH

those of H, and with Xi, i = 1, . . . , nGB, the broken ones – the states obtained
by letting these act on the vacuum do not give back the vacuum:

Xi|0〉 6= |0〉 . (1)

On the other hand, since G is a symmetry of the Hamiltonian H, the latter
commutes with all the generators, which implies that all the states Qi|0〉 are
degenerate with the vacuum:

HXi|0〉 = XiH|0〉 = 0 . (2)

The states Xi|0〉 are the Goldstone bosons. The generators Xi do not form
an algebra, and therefore there is no subgroup of G which is generated by
them – they generate the coset space G/H, and there is a one–to–one map-
ping between the elements of this space and the Goldstone boson fields. The
existence of this mapping dictates the transformation properties of the Gold-
stone boson fields under the group G [2]. Without entering the details, we
just stress that these are nonlinear.

There is a second part to the Goldstone theorem, which is equally impor-
tant as the first, best known one. If we denote the one-particle Goldstone
boson states by |πa〉 and consider the matrix elements of the Noether currents
Jµ

i of the symmetry group G between the vacuum and these states:

〈0|Jµ
i (0)|πa(p)〉 = iF a

i pµ (3)

these define a nGB × nG matrix F a
i . The Goldstone theorem says that this

matrix is of maximal rank, i.e. of rank nGB. In other words, in the proper
basis, the Noether currents of the broken generators have nonzero matrix
elements with the corresponding pion fields: F a

b = δabFa. Together with the
fact that the Noether currents are conserved, this seemingly uninteresting
statement implies that the Goldstone bosons interact weakly at low energy:
more precisely, the strength of their interaction vanishes with the square of
the momenta.
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The construction of the effective Lagrangian for systems with spontaneous
symmetry breaking is based on the Goldstone theorem. The first part im-
plies that there are massless particles in the spectrum – if these are the only
ones, then we can construct an effective Lagrangian containing only these de-
grees of freedom. Moreover, the symmetry transformation properties of the
Goldstone bosons imply that the Lagrangian has to be nonlinear in the cor-
responding fields – therefore, it is necessarily nonrenormalizable. This would
seem to destroy the usefulness of such an approach, because nonrenormaliz-
ability is often connected to lack of predictivity. Here is where the second
part of the theorem plays an important role: since the interaction vanishes
with the square of the momenta, in the Lagrangian one must discover that
terms without derivatives are not allowed (by symmetry), and moreover this
provides an organizing principle, a counting scheme, in the infinite number
of terms of the nonrenormalizable Lagrangian.

We now consider the case of QCD and briefly describe the construction
of the effective Lagrangian in the chiral limit. If we consider Nf massless
flavours (and disregard heavy quarks) the Lagrangian of QCD is

L(0)
QCD = q̄Li /DqL + q̄Ri /DqR −

1

4
Ga

µνG
aµν q =







q1
...

qNf






(4)

and is symmetric under a large global group of transformations:

G̃ = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A . (5)

The two U(1) factors are not relevant for the present discussion for two
opposite reasons: U(1)V remains conserved and the baryon number is the
corresponding conserved quantity, while U(1)A is broken by quantum effects
(is anomalous). The group G we have been referring to in the previous
discussion is, in the case of QCD:

G = SU(Nf )L × SU(Nf )R . (6)

The vacuum, on the other hand, is only invariant under the vector trans-
formations, those for which gL = gR,where (gL, gR) ∈ SU(Nf )L × SU(Nf )R.
QCD in the chiral limit of Nf flavours is therefore expected to have N 2

f − 1
massless particles with the quantum numbers of the broken generators, the
axial ones, i.e. pseudoscalar particles.

The construction of the effective Lagrangian proceeds as follows:
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1. The pions are collected into a matrix–valued field U belonging to the
coset space G/H. Since SU(Nf )L × SU(Nf )R/SU(Nf )V is isomorph
to SU(Nf ) the matrix U is a SU(Nf ) matrix. The fact that it is
an element of the coset is seen in its transformation properties under
SU(Nf )L × SU(Nf )R:

U ′ = gRUg†
L . (7)

The pion fields can be identified with the coefficients of the generators
of SU(Nf ), if we write U as an exponential

U = exp[iφ/F ] , φ =

N2
f
−1

∑

a=1

φaλa , (8)

where λa are the generators (the Gell-Mann matrices for Nf = 3 or
the Pauli matrices for Nf = 2), and F is a constant with dimensions
of an energy, necessary if we want to have the pion fields canonically
normalized.

2. The effective Lagrangian must contain only the fields which are active
in the energy range of interest (in our case the pions) and must respect
the symmetries of the system. In this case this means constructing
a Lagrangian containing the U matrix which is invariant under (7).
Renormalizability is not an issue, and we can therefore have as many
derivatives as we want. The possible terms with up to two derivatives
are

Leff = f1(U) + f2(U)〈U †
2U〉 + f3(U)〈∂µU

†∂µU〉 + O(∂4) , (9)

where 〈A〉 stands for the trace of the matrix A.

3. After having listed all possible terms compatible with the symmetries of
our system, we can look for redundancies and simplify our Lagrangian.
In this case we have two observations: the Lagrangian (9) can only
be invariant under SU(Nf )L × SU(Nf )R if the functions fi do not
depend at all from U – given the transformation property (7), any
matrix element of U can be transformed at will, and the fi remain
invariant only if they do not depend on any of them. The term f1 is
therefore just a constant which we can drop. Under the integral sign
the term proportional to f2 can be transformed into the third one by
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partial integration. In conclusion we are left with one single term if we
consider terms with up to two derivatives:

Leff = L2 + L4 + L6 + . . . , L2 =
F 2

4
〈∂µU

†∂µU〉 , (10)

where the constant factor has been chosen such that the kinetic term
for the pion fields has canonical form (the generators of SU(Nf ) are
normalized such that 〈λaλb〉 = 2δab):

L2 =
1

2
∂µφa∂

µφa + O(φ4) . (11)

The constant F drops out in the kinetic term but appears in all the
interaction terms. The effective Lagrangian becomes predictive once
we can fix this constant. In order to do this we can look at the Noether
currents of the symmetry of the system. At low energy they are repre-
sented by

V µ
i = i

F 2

4
〈λi[∂

µU,U+]〉 Aµ
i = i

F 2

4
〈λi{∂

µU,U+} . (12)

The matrix elements of the axial currents between the vacuum and the
pion fields are given by

〈0|Aµ
i |π

k(p)〉 = ipµδikF . (13)

The constant F is the pion decay constant in the chiral limit. If we
want to work to leading-order accuracy we can stop here and start
calculating.

The effective Lagrangian contains only one term at this level, but since this
is written with the matrix U , which is an exponential of the pion fields, it
contains local interaction terms among as many pion fields as one wants.
The interaction vanishes if we consider static fields, as implied by the Gold-
stone theorem. Here we already see an advantage of the effective Lagrangian
method: to show that the Goldstone theorem implies a vanishing interaction
among pions of zero momentum requires quite some labour. If we instead
use the effective Lagrangian, we immediately find out that symmetry forbids
the interaction among static pions. This is true for any other consequence of
symmetry: with the effective Lagrangian one can derive it without “think-
ing”, but just doing the usual quantum field theory calculations.
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2.2 Explicit symmetry breaking

In the real world there are no massless hadrons – the lightest hadrons,
however, are pseudoscalars which do form an octet (triplet) under SU(3)V

(SU(2)V ) transformations, and so have the right quantum numbers for be-
ing the Goldstone bosons of chiral symmetry breaking in QCD with Nf = 3
(Nf = 2). The presence of a small mass for the candidate Goldstone bosons
can be traced back to the presence of a small explicit chiral symmetry break-
ing term in the QCD Lagrangian – the only possible such term (if we want
to consider a renormalizable theory) is a quark mass term.

LQCD = LQCD
0 − q̄Mq (14)

where M = diag(mu,md,ms) is the quark mass matrix. As long as this
symmetry breaking term is small, we can consider the limit in which the latter
vanishes and make an expansion around it. This amounts to an expansion
in the quark masses. Whatever quantity we consider, we will express it as
its value in the chiral limit plus corrections which are suppressed by powers
of the quark masses. These corrections are given by matrix elements of the
symmetry breaking term among appropriate external states – calculating
these is difficult, as any matrix element in QCD, but since the external states
are the unperturbed ones (in the chiral limit), and the symmetry breaking
term has well defined transformation properties under chiral transformations,
we can at least keep track of symmetry constraints on the correction terms.

Let us consider the mass of a generic hadron h, as an example:

M2
h = M2

h,0 + 〈h|q̄Mq|h〉 + O(m2
q) . (15)

The corrections to the chiral limit value of the mass are determined by the
matrix elements 〈h|q̄q|h〉. For example, if we consider the pions, these are
massless in the chiral limit, M 2

π,0 = 0 and the expansion reads [3]:

M2
π = −(mu + md)

1

F 2
π

〈0|q̄q|0〉 + O(m2
q) (16)

where we have used a symmetry relation among matrix elements of q̄q, a
chiral Ward identity:

〈π|q̄q|π〉 = −
1

F 2
π

〈0|q̄q|0〉 =: B0 . (17)
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The quark condensate 〈0|q̄q|0〉 which determines the size of the pion mass
squared to leading order in the quark mass expansion, is an order parameter
for the spontaneous chiral symmetry breaking.

The effective Lagrangian method is a useful tool also in this circumstance,
as it allows one to derive the symmetry constraints on the perturbative cor-
rections in a systematic way. The implementation proceeds as follows: if
one considers the quark mass matrix as an external, matrix-valued hermi-
tian scalar field s, and assigns to it a specific transformation property under
chiral transformations:

s′ = gRsg†
L (18)

then one makes the QCD Lagrangian formally chiral invariant even in the
presence of a mass term. Explicit symmetry breaking occurs because the
“vacuum” around which one expands is not at s = 0 but rather at s = M.
The corresponding effective Lagrangian must also contain this external field
s, it must still be chiral invariant, and explicit symmetry breaking is obtained
by taking for s the constant value s = M. The latter is considered as a
perturbation and we expand in powers of s. The minimal number is one,
and the only possible term in the effective Lagrangian is:

C〈U †s + s†U〉 = C〈s(U † + U)〉 , (19)

where C is dimensionful constant. Considering directly the limit s = M we
obtain the leading order effective Lagrangian:

L2 =
F 2

4

[

〈∂µU
+∂µU〉 + 〈2B0M

(

U + U+
)

〉
]

, (20)

where we have fixed the constant C = B0F
2/2 by calculating the value of

the quark condensate in the effective theory.
With this effective Lagrangian we can make calculations and even com-

pare these to measurements. For example we can evaluate the masses of the
pseudo Goldstone bosons, and obtain:

M2
π = (mu + md)B0 + O(m2

q)

M2
K+ = (mu + ms)B0 + O(m2

q)

M2
K0 = (md + ms)B0 + O(m2

q)

M2
η =

1

3
(mu + md + 4ms)B0 + O(m2

q) (21)
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These leading order expressions tell us a number of things. First of all they
relate pseudoscalar mass ratios to quark mass ratios [4]:

M2
K/M2

π = (ms + m̂)/2m̂ ⇒ ms/m̂ = 25.9

M2
η /M2

π = (2ms + m̂)/3m̂ ⇒ ms/m̂ = 24.3 (22)

and moreover they imply a prediction for the eta mass in terms of the masses
of the pion and kaon:

3M2
η = 4M2

K − M2
π , (23)

a relation first obtained by Gell-Mann and Okubo [5].
Besides masses, we can of course also calculate decay and scattering am-

plitudes. For example, the ππ scattering amplitude to leading order is given
by [6]:

〈πc(p3)π
d(p4) out | in πa(p1)π

b(p2)〉 = δabδcdA(s, t, u) + δacδbdA(t, u, s)

+ δadδbcA(u, s, t) ,

A(s, t, u) =
s − M2

π

F 2
π

, (24)

where the leading order expressions have been substituted with the physi-
cal pion mass and decay constant. Out of the isospin invariant amplitude
A(s, t, u) we can construct amplitudes of a given isospin in a given channel.
Evaluating the amplitudes at threshold gives us (modulo a normalization
factor) the (S wave) scattering lengths. The I = 0 and 2 scattering lengths
are given by

a0
0 =

7M2
π

32πF 2
π

= 0.16 , a2
0 = −

M2
π

16πF 2
π

= −0.045 . (25)

Later we will see that these quantities are now known up to next-to-next-
to-leading order, with very small uncertainties, and that there are a number
of experiments running, which can test these precise predictions at a similar
level of accuracy.

2.3 External fields

The introduction of a scalar field coupled to the scalar quark bilinear has
served the purpose of dealing with explicit symmetry breaking. We have
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also mentioned, in passing, that with the help of this scalar field we can
evaluate in the effective theory matrix elements of q̄q – more precisely, we can
derive automatically and systematically the symmetry relations respected
by the matrix elements of this quark bilinear. For example, we are not
able to calculate the quark condensate, but can relate the matrix element
of q̄q between two one-pion states to the condensate. The same trick can
be repeated with other operators, like the pseudoscalar bilinear q̄γ5q, or the
Noether currents q̄λaγµq and q̄λaγµγ5q. This is the approach adopted by
Gasser and Leutwyler [7, 8], who introduced the necessary external fields in
QCD:

L = LQCD
0 + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5p)q , (26)

then considered the generating functional, defined as the vacuum-to-vacuum
amplitude with this action:

eiZ[v,a,s,p] ≡ 〈0|Tei
R

d4xL|0〉 , (27)

and stated that a low energy representation of the latter is conveniently
obtained by evaluating the path integral over the pion fields with the action
given by the effective Lagrangian constructed according to the principles we
have discussed so far:

eiZ[v,a,s,p] = N−1

∫

[dU ]ei
R

d4xLeff . (28)

The transformation property of the pseudoscalar external field is identical
to that of the scalar one (18). Those of the external vector and axial-vector
fields, could also be defined analogously. It is useful, however, to promote the
chiral symmetry from global to local – while in this case the transformation
properties of the scalar and pseudoscalar fields remain unchanged, those of
the vector and axial-vector fields must be changed as follows

rµ = vµ + aµ
G

−→ r′µ = gRrµg
−1
R + igR∂µg

−1
R ,

lµ = vµ − aµ
G

−→ l′µ = gLlµg
−1
L + igL∂µg

−1
L . (29)

The addition of the derivative term compensates the one generated by the
kinetic term of the quark fields and makes QCD locally invariant under chiral
transformations. Since the action itself is invariant, so is also the generating
functional (not quite, because there is the chiral anomaly – we forget this for
a moment and come back to it below):

Z[v′, a′, s′, p′] = Z[v, a, s, p] . (30)
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The generating functional contains all possible Green functions of the quark
bilinears to which the external fields are coupled. The invariance of the
generating functional translates into relations among the Green functions –
symmetry relations, i.e. Ward identities. The introduction of the derivative
terms in the transformation of the vector and axial-vector fields has the
consequence that the Ward identities contained in Eq. (30) also explicitly
imply conservation of the axial and vector currents. In summary, Eq. (30)
is a very compact way to write all possible Ward identities following from
chiral invariance.

2.4 Chiral perturbation theory

With the effective Lagrangian method one aims at giving an explicit rep-
resentation of the generating functional which respects the invariance prop-
erty (30). This is obtained through a perturbative calculation of the path in-
tegral, evaluated with an effective Lagrangian containing only the low-energy
degrees of freedom, i.e. the Goldstone bosons:

eiZ[v,a,s,p] =

∫

[dU ]ei
R

dxLeff(U,v,a,s,p) , (31)

where the effective action Seff [U, v, a, s, p] =
∫

dxLeff(U, v, a, s, p) must con-
tain all possible terms which are invariant under local chiral transformations
– the latter is the only requirement we have to make if we want to be com-
pletely general. The effective Lagrangian which is invariant under local chiral
transformations is obtained from Eq. (20) by transforming the normal deriva-
tives into covariant ones and adding the pseudoscalar to the scalar external
field – of course Eq. (20) represents only the leading order whereas the full
effective Lagrangian contains terms with any number of derivatives and ex-
ternal fields:

Leff = L2 + L4 + L6 + . . . L2 =
F 2

4
〈DµU

+DµU + χ†U + U †χ〉 , (32)

where DµU = ∂µU − irµU + iUlµ and χ = 2B0(s + ip).
The reasoning we just stated is absolutely general and for theories without

anomalies this would be the end of the story. In QCD, however, the chiral
symmetry is anomalous, and the generating functional is correspondingly
noninvariant. It is possible, however, to evaluate exactly the noninvariant
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term in the transformation – in this case the effective Lagrangian has to
be constructed such that it reproduces the anomalous noninvariance of the
generating functional. Wess and Zumino showed that in QCD this is indeed
possible [9, 10, 11]. In the chiral counting the noninvariant term is first
encountered at order p4 – if we stop at order p2 the Lagrangian in (32) is all
there is.

The advantage of this formulation is that one directly deals with Green
functions of quark bilinears, and these transform linearly under chiral trans-
formations. Formulating symmetry properties working directly with the pi-
ons would be a lot more difficult, because these transform nonlinearly – more-
over the exact transformation properties of the pions vary, depending on the
representation one chooses for the pion fields. Indeed in this formulation of
the effective Lagrangian method the pions move to the background and play
the role only of integration variables in the path integral – in the foreground
is the invariance property of the path integral. The latter is constructed in
such a way that the Green functions it describes contain poles at the proper
places – poles due to the exchange of pions. The residues of these poles give
the matrix elements of pions. This is exactly what one would do if one were
able to calculate directly the path integral of QCD (and it is exactly what
one does with lattice calculations).

Another practical advantage of the external fields is that the W and Z
bosons as well as the photons, couple to quarks exactly like the v and a fields
we introduced. If we want to evaluate matrix elements involving quarks and
these bosonic fields we just have to substitute the appropriate combinations
of a and v with the W , Z, or photon fields and take the matrix element we
are interested in.

3 Higher orders

In Eq. (32) we have specified only the leading order effective Lagrangian
and just listed the next-to-leading and next-to-next-to leading term. If one
wants to evaluate a physical quantity to a higher accuracy one needs to
take these into account as well. But not only: as shown in Eq. (31), the
generating functional (any Green function) of QCD at low energy is obtained
by evaluating the path integral with the action specified by the effective
Lagrangian – if we want to increase the accuracy of a calculation we have
to evaluate also loop diagrams. The counting of loop diagrams in CHPT
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has been discussed first by Weinberg [12] and can be summarized by the
statement that every loop counts like order p2: a complete calculation at
order p4 must necessarily include one-loop diagrams with vertices from the
L2 Lagrangian as well as tree diagrams with the L4 Lagrangian. If we want to
go up to order p6 we must take into account two-loop diagrams with vertices
only from L2 and one-loop diagrams with only one vertex from L4 and tree
diagrams from L6.

These are the rules of the game – if one wants to play it one may stop
reading here and start calculating. A student who has learned to do loop
calculations within a renormalizable quantum field theory, can do it also
using an effective Lagrangian. It is true, however, that the use of an effective
Lagrangian for calculating loops poses some conceptual problems – a good
student at this point will certainly ask himself: “when I calculate loops I
integrate over all possible momenta, and if I use vertices and propagators
from the effective Lagrangian, I am using these well beyond their range of
validity. How can I trust such a calculation? What is its meaning?”

In this section I will provide answers to these questions by analyzing the
loop calculation of one simple quantity, the scalar form factor of the pion,
which is defined as

〈πi(p1)π
j(p2)|m̂(ūu + d̄d)|0〉 =: δijΓ(t) , t = (p1 + p2)

2 , (33)

where m̂ = (ms + md)/2. This matrix element is relevant to the decay
h → ππ, which would have been the main decay mode for a very light
Higgs (of course this scenario is now experimentally excluded). The tree-
level calculation of this matrix element is simple and leads to

Γ(t) = 2m̂B = M 2
π + O(p4) . (34)

This result, which we worked out from the Lagrangian, is actually a conse-
quence of a general theorem, due to Feynman and Hellman.[13] This states
that the expectation value of the perturbation in an eigenstate of the total
Hamiltonian determines the derivative of the energy level with respect to the
strength of the perturbation:

m̂
∂M2

π

∂m̂
= 〈π|m̂q̄q|π〉 = Γ(0) . (35)

The value of the form factor at zero momentum transfer is fixed by this
theorem, and a simple power counting implies that at leading order the scalar
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form factor is a constant – at order p2 the theorem completely fixes the form
factor. On the other hand no general principle forbids a dependence of the
form factor on t (to the contrary, they imply it, as we will see), and to
generate this we necessarily have to go beyond leading order.

Before starting the loop calculation, let us have a look at what happens
to the form factor once we include tree-level contributions from higher-order
terms in the Lagrangian. We now present the Lagrangian at order p4 for
the case in which one expands around mu = md = 0 and keeping ms at its
physical value. In this case the chiral symmetry is SU(2)L × SU(2)R. The
Lagrangian of order p2 remains unchanged – the only change is that the field
U , and its logarithm φ are now 2 × 2 matrices. At order p4 the Lagrangian
is simpler, because we can use more trace identities to reduce the number of
independent terms. For two light flavours this is a sum of seven terms1

L4 = `1
1

4
〈uµu

µ〉2 + `2
1

4
〈uµuν〉〈u

µuν〉 + `3
1

16
〈χ+〉

2 + `4
i

4
〈uµχ

µ
−〉

− `5
1

2
〈f−µνf

µν
− 〉 + `6

1

4
〈[uµ, uν ]f

µν
+ 〉 − `7

1

16
〈χ−〉

2 , (36)

where we have used the compact notation (with U = u2):

uµ = iu†DµUu† = u†
µ

χ± = u†χu† ± uχ†u

χµ
± = u†Dµχu† ± uDµχ†u

fµν
± = uF µν

L u† ± u†F µν
R u , (37)

and F µν
R,L are the field strengths of rµ and lµ . Only two of these seven terms

contribute to the scalar form factor, those proportional to `3 and `4:

Γ[`3,`4](t) =
M2

F 2

[

−4M2`3 + t`4

]

, (38)

the calculation is recommended as an easy exercise, as is the calculation
of the contribution of `3 to the pion mass. Once these two calculations
are completed, one can then check that the Feynman–Hellman theorem is
respected also in this case.

1If we disregard contact terms, i.e. those that depend only on the external fields. Notice

also that in the theory with Nf = 2 and no electromagnetic interactions there is no chiral

anomaly.
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Figure 2: One-loop diagram for the scalar form factor of the pion. The double
line stands for the scalar source, whereas single lines for pions.

The result in Eq. (38), a tree-level calculation with the next-to-leading
order Lagrangian, is merely a statement about how the symmetry constrains
this particular matrix element: at this order the scalar form factor can have
at most a term linear in t. No symmetry relation exists between the constant
term and the coefficient of the linear term, hence we have two different con-
stants. The constant term is related to the derivative of the pion mass with
respect to the strength of the symmetry-breaking term in the Lagrangian,
whereas the coefficient of the linear term is related to the correction to the
pion decay constant (again, it is a very good exercise to calculate the latter
with the Lagrangian in Eq. (36)).

3.1 Loops and renormalization

Besides the less interesting tadpole graphs and the wave function renormal-
ization there is only one graph for this process, the one shown in Fig. 2. Its
structure is
∫

d4l

(2π)4

{M2, p2, p·l, l2}

(l2 − M2)((p − l)2 − M2)
⇒ xT (M 2) + yJ(t) (39)

T (M 2) =

∫

d4l

i(2π)4

1

(M2−l2)
, J(t)=

∫

d4l

i(2π)4

1

(M2−l2)(M 2−(p−l)2)
,

where p = p1 + p2. We have indicated, in the first integral, all the terms
that can appear in the numerator, and, after the arrow, the two possible
structures to which the various terms can be reduced. The momenta and
masses in the numerator come from the four-pion vertex on the right-hand
side of the diagram. The power counting for this integral shows that it
represents a correction of order p2 to the leading-order term (the integration
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measure, which is of order p4, is compensated by the two propagators) in
agreement with the general counting rule stated by Weinberg [12].

If we expand the tadpole integral T (M 2) and the loop integral J(t) in a
Taylor series in their respective arguments:

T (M 2) = a + bM 2 + T̄ (M 2) , J(t) = J(0) + J̄(t) , (40)

only the first terms in the expansion are divergent, whereas both T̄ (M 2) and
J̄(t) are finite – this is easily seen by taking a sufficient number of derivatives
on the loop integrals in Eq. (39). It is left as an exercise to the reader to
show that the one-loop diagrams that we have neglected can only produce
terms like T (M 2). Therefore the contribution of the loop diagrams to the
scalar form factor has the following structure:

Γ(t) ∼
M2

F 2

[

x1bM
2 + x2tJ(0) + x1T̄ (M 2) + x2J̄(t)

]

. (41)

The divergent part of the loop diagrams has exactly the same structure as
the counterterm contribution calculated above: to remove it we simply need
to define the counterterms properly (in this case the constants `3 and `4).

The principles we have followed in the construction of the effective La-
grangian only appealed to symmetry arguments, and therefore allowed for
an infinite number of terms. Once this is accepted, there is no problem of
principle in carrying through the renormalization program, because all coun-
terterms necessary to remove the divergences must already be present: as
anticipated, the difference between renormalizable and non-renormalizable
theories is, in a sense, a technical detail.

To renormalize the form factor, the two counterterms `3 and `4 have to
be defined in the following way

`3 = `r
3(µ) −

1

2
λ , `4 = `r

4(µ) + 2λ , (42)

where λ is divergent and dependent on the regularization method (in dimen-
sional regularization, for example, it is defined by λ = (cµ)d−4/(d − 4), with
c an arbitrary constant that defines the regularization scheme).

If we look at the definition of the operators in front of `3 and `4 we see
that (as usual) they contain an infinite number of pion fields. For example
they both contain a term with one scalar source and 6 pion fields. Does it
mean that if we had calculated that matrix element to one loop we would
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have found the same divergent part for `3 and `4? Or, to put it differently,
that once we calculate the divergent part of the scalar form factor then we
know the divergent part of all other matrix elements with a higher number
of pion fields?

The answer is yes. Chiral symmetry puts a strong constraint on the diver-
gences: they have to be chiral-invariant terms. This conclusion is originally
due to Weinberg [12] on the basis of a highly plausible, but still heuristic
argument. It is now put on a solid basis by the work of Leutwyler [18]:
he proved that to calculate hadronic Green functions with an effective La-
grangian, such that they respect the Ward identities implied by the chiral
symmetry, one necessarily has to start from a chiral-invariant effective La-
grangian. The non-trivial part in this statement is that it takes into account
also quantum effects: anomalous symmetries show that it is not always true
that a symmetry that exists at the classical level survives the quantum cor-
rections – or vice versa, that to have a symmetrical quantum theory one
necessarily has to start from a symmetrical classical Lagrangian.

The theorem applies also to the divergent part of the quantum correc-
tions: they have to be chiral-invariant. A general theorem of quantum field
theory states that the divergent part of a loop graph is a polynomial in the ex-
ternal masses and momenta. These two theorems lead to the conclusion that
the divergences, order by order, can be reabsorbed by the chiral-invariant
counterterms.

3.2 Chiral logarithms

If we expand the form factor in a Taylor series in t, we can write it in the
following form:

Γ(t) = Γ(0)

[

1 +
1

6
〈r2〉πSt + O(t2)

]

. (43)

The coefficient of the linear term, properly normalized, is called the scalar
radius of the pion. Its size is a measure of the spatial extension of the pion
when probed with a scalar source. We have stated above that the coupling
constant that appears in this quantity, `4, also determines the first correction
of the pion decay constant around the chiral limit. There is another piece
of information on the scalar radius, which we can already gather from the
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simple sketch of the loop calculation given above:

〈r2〉πS ∼ J(0) =

∫

d4l

i(2π)4

1

(l2 − M2)2
∼ ln

M2

Λ2
, (44)

namely that the scalar radius contains an infrared divergence. In the chiral
limit this quantity diverges. This divergence should not be removed and
does not represent a problem because it has a physical meaning, in the sense
that when the pion becomes massless the cloud of pions surrounding any
hadron (and therefore also the pion itself) extends to an infinite range. A
quantity that measures the spatial extension of this cloud should indeed
become infinite in the chiral limit. Notice that the scalar form factor is finite
and remains finite also in the chiral limit – it is only the first derivative in t,
calculated at t = 0 that diverges when the pion mass goes to zero.

These infrared divergences are present everywhere in pion physics, and
in many cases they are among the most important physical effects (less so in
the case of kaons). Their relevance was first pointed out by Li and Pagels[14].
The effective Lagrangian method provides a systematic way to calculate these
effects. It is also interesting to observe that the coefficients of these logs
are given by renormalization group equations – despite several attempts,
and a thorough understanding of the relation between these logs and the
renormalization group equations for nonrenormalizable theories, however, a
way to resum the chiral logs has not yet been found [12, 15].

As we have seen in the above example, the chiral logs arise from the
infrared region in the loop integrals – precisely the region where we should
fully trust the vertices of our effective Lagrangian. One may be less at ease
with the ultraviolet region of the loop integrals: there one has no justification
for the use of the effective Lagrangian. On the other hand, through the
process of renormalization, that part of the integrals is completely removed
and substituted with unknown constants, the counterterms. As is sometimes
said, these parametrize our ignorance of the physics that lies above the range
of applicability of the effective Lagrangian.

3.3 Loops and unitarity

Until now the only part of the loop integrals that we have not analysed
is the finite, analytically non-trivial part of the loop integral, the function
J̄(t). Its presence is a consequence of unitarity, as we are now going to
explain. According to the Watson theorem [16], above threshold but below
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the inelasticity threshold, the phase of the scalar form factor is equal to the
S-wave ππ phase shift with isospin I = 0, δ0

0. As is well known, this theorem
is a consequence of unitarity:

ImΓ̄(t) = σ(t)Γ̄(t)t00
∗
(t) = Γ̄(t)e−iδ0

0 sin δ0
0 = |Γ̄(t)| sin δ0

0 , (45)

where σ(t) = [1 − 4M 2
π/t]1/2 and Γ̄(t) = Γ(t)/Γ(0), and t00 is the I = 0

S-wave of ππ scattering. The unitarity relation (45) shows that the leading-
order expression Γ̄(t) = 1 cannot be the whole story: if we want an accurate
description of the form factor away from t = 0, we need to include higher
orders and, in particular, loops – imaginary parts can only be generated by
loop graphs.

Notice that since at leading order Γ̄(t) is O(1), and the phase δ0
0 is O(p2),

the O(p2) imaginary part (which is a next-to-leading order correction) is
completely fixed by leading-order quantities:

ImΓ̄(2)(t) = δ0
0
(2)

(t) = σ(t)
2t − M 2

π

32πF 2
π

. (46)

The use of the effective Lagrangian method to calculate the form factor
guarantees that this relation is satisfied. The complete expression for the
one-loop scalar form factor reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(l̄4 − 1) +
2t − M 2

π

2F 2
π

J̄(t) , (47)

where J̄(t) is the subtracted one-loop integral (40). Its explicit expression
reads:

J̄(t) =
1

16π2

[

σ(t) ln
σ(t) − 1

σ(t) + 1
+ 2

]

. (48)

The reader can now easily verify that the imaginary part of the form factor
at this order indeed satisfies (46).

3.4 Dispersion relation for the scalar form factor

A real analytic function must be real on the real axis: the scalar form factor is
non-analytic from threshold (4M 2

π) up to infinity. On the basis of very general
arguments, which mainly use the causality principle, one can prove that as
a function of t, the scalar form factor must be analytic everywhere else (see
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Ref.[17] for a general discussion of the analyticity properties of amplitudes
and Green functions). The non-analyticity of the form factor on the real axis
can be further characterized, and described as a discontinuity:

Γ̄(t + iε) = Γ̄∗(t − iε) = |Γ̄(t)|eiδ0
0(t) . (49)

Given these analytic properties, we can write the following dispersion
relation:

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt′

t′2
ImΓ̄(t′)

t′ − t
, (50)

where, for later convenience, we have subtracted the dispersive integral twice
– we will come back to the issue of how many subtractions are necessary for
the dispersive integral to converge. The dispersion relation shows that, if we
know the subtraction constants (in this case only one, b) and the imaginary
part on the real axis, we can reconstruct the scalar form factor everywhere
on the complex plane.

It is no surprise that any perturbative calculation in a quantum field
theory produces amplitudes and Green functions with the correct analytic
properties. Using an effective field theory makes no difference: the form fac-
tor calculated to one loop in CHPT must have the correct analytic properties,
and must satisfy (at the perturbative level) the dispersion relation (50). To
convince ourselves that this is actually the case, let us first apply the chiral
counting to the dispersion relation:

Γ̄(0) = 1 , b ∼ O(1) , ImΓ̄(t′) = O(p2) . (51)

As we have seen the O(p2) imaginary part is fully fixed by leading-order
quantities, (46), and apart from an unconstrained polynomial term, the real
part must be given by the dispersive integral over this known imaginary part.
We leave it as an exercise to prove that this is true. For this it is useful to
know the dispersive representation of the loop integral

J̄(t) =
t

16π2

∫ ∞

4M2
π

dt′

t′
σ(t′)

t′ − t
. (52)

In the previous section we showed that the renormalization procedure
removes the contributions to the loop integrals where the momentum squared
of the pions is large. This was reassuring because we cannot hope that our
effective Lagrangian describes highly virtual pions well. In the present section
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we are dealing with the contribution to the loop integrals from real pions:
the dispersive integrals. As we have seen above, these extend all the way
up to infinity, as required by analyticity. In the perturbative expansion that
we are considering, the imaginary part of the form factor, which is in the
integrand, is evaluated only to leading non-trivial order. This description of
the imaginary part can be reasonably accurate only in the low energy region:
still, in the integral, it is used all the way up to infinity. How can we trust
the dispersive integral?

In fact, we do not. At least not for the contribution that comes from the
high-energy region. Suppose we decide to remove the part of the dispersive
integral from Λ = 1 GeV to infinity. We should then subtract from the form
factor a term like:

t2

π

∫ ∞

Λ2

δ0
0
(2)

(t′)

t′2(t′ − t)
=

t2

π

∫ ∞

Λ2

δ0
0
(2)

(t′)

t′3

(

1 +
t

t′
+ O(t2)

)

. (53)

The Taylor expansion inside the integral can be safely performed because
the CHPT calculation of the form factor is valid only for t ¿ Λ2. In the
chiral language, this part of the dispersive integral can be represented as a
polynomial series starting at order p4, i.e. at an order which is beyond the
accuracy at which we are presently working. This shows that worrying about
these contributions to the dispersive integrals is futile: the only sensible way
to improve the evaluation of the dispersive integral is to go one order higher
in the chiral expansion. This would automatically give a representation of
the form factor that contains the dispersive integral over the imaginary part
correct up to order p4. For those who are interested in the numerics, the first
term in the Taylor expansion of the integral (53) is equal to:

t2

π

∫ ∞

Λ2

δ0
0
(2)

(t′)

t′3
= 0.7

[

t( GeV2)2
]

, (54)

which means, for t = (0.5 GeV)2 (which is about the upper limit of validity
of the chiral expansion), a 4% correction to the leading-order result. Also
numerically everything is well under control.

4 Applications

There are plenty of applications of the effective Lagrangian method and they
are not restricted to particle physics, although the latter is the field where
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the applications have reached the highest level of sophistication. If one wants
to understand the phenomenology of strongly interacting particles at low en-
ergy, CHPT provides the proper framework to do it – not that there are no
puzzles or experimental results which are not quite explained or understood,
but even in these cases, the use of CHPT allows us to learn something from
the puzzles. In this field the most interesting development of recent years is
that experiments are reaching a high level of precision, and that the theory,
stimulated by the perspective of having very precise data, has anticipated
that and provided some remarkably precise predictions. This is obtained
mainly in pion physics – the expansion in the mass of the strange quarks in-
evitably leads to a slowly converging series. In the following I will discuss two
recent applications in pion physics which illustrate how, through a combined
use of CHPT and dispersion relations one can reach a high level of precision,
even for quantities which are in principle outside the region of application of
CHPT, like the mass of resonances.

4.1 ππ scattering

In Sect. 2.2 we have discussed the leading order calculation of the ππ scat-
tering amplitude and the numerical prediction (which is now 40 years old!)
for the S-wave scattering lengths (25). In the meanwhile these have been
calculated to NLO and NNLO. The formula of the S-wave scattering lengths
to NLO is quite instructive [7]:

a0
0 =

7M2
π

32πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

200πF 2
πM2

π

7
(a0

2 + 2a2
2)

−
M2

π

672π2F 2
π

(15¯̀
3 − 353)

]

= 0.16 · 1.25 = 0.20

2a0
0 − 5a2

0 =
3M2

π

4πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

41M2
π

192π2F 2
π

]

= 0.624 , (55)

as it shows explicitly that the core of the effective Lagrangian method is
simply in establishing symmetry relations among different quantities. At
leading order everything can be expressed in terms of the pion mass and
decay constant – these fully specify the Lagrangian. At NLO we have seven
new constants in the game, cf. Eq. (36), and they have a less direct physical
meaning. Still, whenever they appear one can reexpress them in terms of
other physical quantities and write a NLO chiral expression in a way which
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makes the symmetry relations explicit. In Eq. (55) the two S-wave scattering
lengths are expressed in terms of the pion scalar radius and the two D-wave
scattering lengths (aI=0,2

2 ) – plus the low-energy constant `3 which we have
already encountered in Sec. 3, and which is the coefficient of the quadratic
term in the quark mass expansion of the pion mass squared. A particular
combination of the S-scattering lengths has a very simple relation to the
scalar radius, as shown in Eq. (55). If one can pin down these quantities, one
can work out a more accurate numerical prediction for the S-wave scattering
lengths, as was originally done by Gasser and Leutwyler [7]. The remarkable
outcome of the numerical estimate is that with respect to leading order, the
NLO prediction for a0

0 is 25% higher. For an expansion in m̂/1 GeV ∼ 5%
this is quite a large correction. The reason for such a large correction is to
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Figure 3: Theory predictions, lattice calculations and measurement of a0
0 and

a2
0. See the text for more details.
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be found in the presence of large chiral logs, also present in the scalar radius
discussed in Sect. 3.1. The chiral logs in the scattering lengths are

a0
0 =

7M2
π

32πF 2
π

[

1 +
9

2
`χ + . . .

]

a2
0 = −

M2
π

16πF 2
π

[

1 −
3

2
`χ + . . .

]

, (56)

where

`χ =
M2

π

16π2F 2
π

ln
µ2

M2
π

, (57)

and indeed the coefficient in a0
0 happens to be quite large.

The ππ scattering amplitude has been later calculated even to NNLO [19],
and an accurate estimate of the numerical prediction and the corresponding
uncertainties has been worked out on the basis of a matching with dispersion
relations [20]:

a0
0 = 0.220 ± 0.005, a2

0 = −0.0444 ± 0.0010 . (58)

These remarkably precise predictions are currently being tested by a num-
ber of experiments. A summary of the current situation is shown in Fig. 3
and is as follows

a0
0 = 0.26 ± 0.05 [21]

a0
0 = 0.216 ± 0.013 ± 0.003 [22]

|a0
0 − a2

0| = 0.264 +0.033
−0.020 [23]

a0
0 − a2

0 = 0.268 ± 0.010 ± 0.013 [24]

a0
0 = 0.256 ± 0.011 — PRELIMINARY — [25] . (59)

After the old Geneva-Saclay experiment [21], the most recent ones have con-
firmed the CHPT prediction, although not yet reaching the same level of
accuracy. The most recent number from the NA48/2 experiment [25], a mea-
surement of the phase shift difference δ0

0 − δ1
1 in Ke4 decays, and indirectly

of the scattering length a0
0, although preliminary, does show some tension

with the prediction (58), and with the other Ke4-decay measurement of the
E865 Collaboration from Brookhaven [22]. A completely different method to
measure the difference |a0

0 − a2
0| (through a measurement of the lifetime of

pionium) is used by the DIRAC collaboration [23]. The same combination is
measured by NA48/2 [24] in a cusp effect in K → 3π decays [26]. In Fig. 3
also the phenomenological analyses of Descotes-Genon et al. (entry DFGS
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(2002) in the legenda, see Ref. [27]) and of Peláez and Ynduráin (entry PY
(2005) in the legenda, see Ref. [28]) are shown.

In the same figure, besides the experimental numbers just discussed, also
some lattice data have been plotted. One of them, from the NPLQCD col-
laboration [29] is a direct calculation on the lattice of the I = 2 S-wave
scattering length and agrees well with the chiral prediction. The other three
[30, 31, 32], are calculations of the constants `3,4 which are two of the crucial
inputs in the chiral calculation. The points on the plane corresponding to
these calculations are obtained by using these numbers together with those
of [20] for the remaining constants. All three agree with the chiral numbers.
We stress, however, that the MILC numbers are the only ones obtained with
three light sea (staggered) quark flavours – the other two simulations are
done without strange quarks in the sea.

4.2 The σ meson

As we have discussed in Sec. 2.2, the lowest part of the QCD spectrum can
be well understood within the effective Lagrangian framework: the lightest
hadrons would be massless in the chiral limit and the pattern of their small
masses is well explained by leading order formulae. It is of course an es-
sential test of our understanding of strong interactions to be able to explain
the whole hadronic spectrum, including resonances. One of the problems of
this enterprise is to obtain reliable experimental information on these res-
onances. This appears to be particularly difficult for resonances with the
quantum numbers of the vacuum: a look at the PDG [33] shows that, de-
spite many relevant experimental results, the lightest resonance with isospin
and spin zero – commonly known as the σ – is not known very well, cf. also
Fig. 1. According to the PDG its mass lies between 400 and 1200 MeV and
its half-width between 250 and 500 MeV. In this case, even if one were able
to calculate the σ resonance parameters from first principles, it would hardly
be a significant test to compare these to the “experimental” numbers. The
main problem, in this case, is that in order to translate data into resonance
parameters, one needs a theoretical description of the data – for most experi-
mental situations it is difficult to have a model–independent parametrization,
and as a result the same data can be interpreted in terms of wildly differing
resonance parameters.

In a recent work [34] we have shown two things: first, that dispersion
relations for scattering amplitudes do provide a model-independent way to
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Figure 4: Domain of validity of the Roy equations for the partial waves tI
`(s)

in the complex plane of the variable s, here expressed in pion mass squared
units.

translate data into resonance parameters, and second, that in the case of the
σ, the crucial input is represented by the two S-wave scattering lengths. The
argument goes as follows: the Roy equations provide a dispersive represen-
tation for the partial waves of the ππ scattering amplitude which reads

t00(s) = a + (s − 4M 2
π) b +

∫ Λ2

4M2
π

ds′
{

K0(s, s
′) Im t00(s

′)

+ K1(s, s
′) Im t11(s

′) + K2(s, s
′) Im t20(s

′)
}

+ d0
0(s) . (60)

This is a twice subtracted dispersion relation which takes into account cross-
ing symmetry in order to

1. write the contribution of the left-hand cut in terms of the imaginary
parts of other partial waves in the physical region;

2. write the two subtraction constants in terms of the two S-wave scat-
tering lengths a = a0

0, b = (2 a0
0 − 5 a2

0)/(12M
2
π).

The so-called driving term d0
0(s) collects the dispersion integrals over the

higher partial waves (` ≥ 2), as well as the high energy end of the integral
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over the S- and P -waves. The kernels Ki(s, s
′) are known functions. The

dispersive representation (60) is valid even for complex values of s, if these
are inside the ellipse shown in Fig. 4, which is the region inside which the
Roy equations have been rigorously proved to be valid. A direct evaluation of
the representation (60) gives, however, the partial wave on the first Riemann
sheet – the poles corresponding to resonances are to be found on the second
sheet.

In order to reach the second sheet one can use the S matrix element
S0

0(s) = 1 − 2
√

4 M2
π/s − 1 t00(s) and its unitarity property, which implies

the relation
S0

0(s)
II = 1/S0

0(s)
I . (61)

This shows that the amplitude contains a pole on the second sheet if and only
if S0

0(s) has a zero on the physical sheet. So, all we need to do is numerically
evaluate Eq. (60) for complex values of s in the domain where it has been
shown to hold and find out whether or not S0

0(s) has zeros there. The analysis
presented in Ref. [34] yields the two pairs of zeros shown in Fig. 4. The one
corresponding to the σ (the other is the f0(980)) has parameters

Mσ = 441 +16
−8 MeV , Γσ = 544 +18

−25 MeV . (62)

An analogous analysis has been recently applied to the κ [35] with similarly
precise results.

We stress that the precision in the final numbers (62) is a direct conse-
quence of the precise chiral prediction for the scattering lengths (58). The
rest of the experimental input – the imaginary parts in the dispersive inte-
grals in Eq. (60) – plays only a relatively minor role so that, despite relatively
large experimental uncertainties, the corresponding contribution to the er-
ror in Eq. (62) is limited. One could, however, completely give up any use
of theory in the calculation, and use only experimental input, even for the
scattering lengths, cf. (59). This would increase the final error in (62) and
shift somewhat the central values. The outcome, however, would be much
more precise than what is still listed in the PDG.

5 Conclusions and outlook

In these lectures I have provided an introduction to effective field theories for
systems with spontaneous symmetry breaking. I have mainly concentrated
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on the foundations of the method and have emphasized the systematic and
rigorous aspects of it: a proper application of effective field theories is strictly
equivalent to a full exploitation of the symmetry properties of the underlying
theory and of some general principles, like analyticity and unitarity, and
nothing else. At the end I have discussed two recent applications, both
related to ππ scattering. The two S-wave scattering lengths are two very
interesting physical quantities which can be

1. predicted with very high accuracy within chiral perturbation theory
(combined with Roy equations);

2. measured with very high accuracy and with different methods in run-
ning experiments;

3. calculated from first principles in lattice QCD.

Comparing the numbers obtained in these three manners represents a thor-
ough test of our understanding of the strong interactions – the precision of
this test is a rare exception in hadronic physics and illustrates well the power
of the effective field theory method.

If these lectures have sparkled some interest in the reader, she will cer-
tainly want to read more. A thorough and detailed introduction to chiral
perturbation theory can be found in Ref. [36], where the reader can also find
an extensive bibliography and suggestions for further readings.

The very last word I want to spend to emphasize once more the universal
character of effective field theories: applications cover all aspects of low–
energy hadronic physics (in particular as far as the connections to lattice
calculations and the related necessary extrapolations are concerned), but also
extend to other very different physical systems, like antiferromagnets [37], or
gravitational interactions [38].
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